Friday, August 26, 2016

The abc-conjecture 1

Suppose a, b and c are natural numbers such that a,b,c are mutual co-prime and a+b=c. Those triples are called abc-triplets. The abc-conjecture concern the unusual possibility that

(1) a+b>rad(ab(a+b))

where rad is the radical, the product of all unique prime factors of a number. I.e. rad(4)=2, rad(6)=6, rad(60)=30, rad(81)=3, rad(101)=101, ...

There is an infinite number of pairs (a,b) as (1), but given a real number epsilon>0 there seems to be only a finite number of abc-triplets (a,b,a+b) such that

(2) a+b>rad(ab(a+b))^(1+epsilon) 

and that's one version of the famous abc-conjecture.

: abcpair \ a b -- flag
  locals| b a |
  a b ugcd 1 =
  a b + 
  dup a ugcd 1 =
  swap b ugcd 1 =
  and and ;

test if (a,b,a+b) is a abc-triplet, and

: unusual \ a b -- flag
  locals| b a |
  a b 2dup + * * radical
  a b + < ;

test if a+b>rad(ab(a+b)).

1 1000 condition non create-set zdup cardinality . 999  ok

creates the set {1,...,999}.

zdup cartprod zdup cardinality . 998001  ok

create the Cartesian product {1,...,999}x{1,...,999} and 

2dim < filter-set zdup cardinality . 498501  ok

filter the set so that the first component is less than the second.

2dim abcpair filter-set zdup cardinality . 303791  ok

This skip all (a,b) but those where (a,b,a+b) is a abc-triplet.

2dim unusual filter-set zdup cardinality . 32  ok

This is the remaining set of pairs such that (1):

zdup cr zet.
{(1,8),(1,48),(1,63),(1,80),(1,224),(1,242),(1,288),(1,512),(1,624),(1,675),(1,728),(1,960),(2,243),(3,125),(4,121),(5,27),(5,507),(7,243),(13,243),(25,704),(27,512),(32,49),(32,343),(49,576),(81,175),(81,544),(100,243),(104,625),(169,343),(200,529),(343,625),(640,729)} ok

Considering the pairs as Gaussian integers and transform the set of unusual pairs to their Gaussian norms give:

zdup 2dim gnorm transform-set zdup cardinality . cr zet. 32
{65,754,2305,3425,3970,6401,14657,15634,37186,50177,58565,59053,59098,59218,69049,82945,118673,146210,257074,262145,262873,302497,319841,334177,389377,401441,455626,496241,508274,529985,921601,941041} ok

Since the both sets have 32 elements I hasten to raise the conjecture:

(3) All (ordered) unusual pairs has unique Gaussian norms. 

To test the conjecture for different limits without stack overflow, conj3 works:

: abcunusual \ ab -- flag
  2dup abcpair 0= 
  if 2drop false
  else unusual
  then ;

: conj3 \ n -- set flag
  true locals| flag |
  0 >zst \ empty set on zst stack
  ?do i 1 
     ?do i j abcunusual 
        if i j gnorm dup zdup smember
           if false to flag drop i j pad 2! leave
           else >zst zfence union
     loop flag 0= if leave then
  loop flag ;

100 conj3 . -1  ok

zet. {65,754,2305,3425,3970,6401} ok

5000 conj3 . -1  ok
zdup cardinality . 87  ok
cr zet.
{65,754,2305,3425,3970,6401,14657,15634,37186,50177,58565,59053,59098,59218,69049,82945,118673,146210,257074,262145,262873,302497,319841,334177,389377,401441,455626,496241,508274,529985,921601,941041,1048577,1048601,1242793,1476226,1569061,1750393,1837097,2566561,2944705,3067769,3317074,4093154,4101154,4194385,4213625,4484017,4584929,4735097,4783069,4798594,4916545,5303810,5592434,5646001,5760001,5774602,5831545,8977273,8998393,9144577,9439993,9765746,9976306,10185529,11944561,12379505,13302409,13986466,14548594,15108770,15745025,15784466,15818497,15944098,16769026,16777337,16778441,17155426,18548777,19131877,23070401,23660897,23819585,24153953,33667138} ok

True so far. This take some time but I try 10000:

10000 conj3 . -1  ok
zdup cardinality . 129  ok
cr zet.
{65,754,2305,3425,3970,6401,14657,15634,37186,50177,58565,59053,59098,59218,69049,82945,118673,146210,257074,262145,262873,302497,319841,334177,389377,401441,455626,496241,508274,529985,921601,941041,1048577,1048601,1242793,1476226,1569061,1750393,1837097,2566561,2944705,3067769,3317074,4093154,4101154,4194385,4213625,4484017,4584929,4735097,4783069,4798594,4916545,5303810,5592434,5646001,5760001,5774602,5831545,8977273,8998393,9144577,9439993,9765746,9976306,10185529,11944561,12379505,13302409,13986466,14548594,15108770,15745025,15784466,15818497,15944098,16769026,16777337,16778441,17155426,18548777,19131877,23070401,23660897,23819585,24153953,26040898,31640674,31706945,32283521,33667138,34000562,37515986,37520281,38950162,39052481,39421505,40947202,40985921,43033601,43050817,43445377,44289026,44446210,47045882,47046137,47048690,56811506,64000361,64235537,65713618,66928882,66961570,68374489,68508353,70761674,73260281,73530626,85470281,87890626,88510465,93655426,94008377,96040001,96060226,118771553,123820633,140639489,141533305} ok

(To be continued)

1 comment:

  1. Have to college student joggers or maybe young people along with finding out ailments get hold of exceptional rentals for college or university? The reason or perhaps have you thought to? What's rational?